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The dynamics of a perfect fluid is studied in 5-dimensional special relativity, a frame-
work which can be considered the 5-d generalization of cosmological special relativity
as well as the flat specialization of 5-d brane world theory. This picture, as described in
an earlier paper, directly includes a particle production mechanism. Here it is showed
that the source of particle production vanishes if the fluid is isentropic. Moreover it is
showed that the hydrodynamical equations can be interpreted in terms of a scale factor,
giving rise to a set of equations which simulate in a sense Friedmann cosmology.

KEY WORDS: 5 dymensions; relativistic hydrodynamics; cosmological relativity;
friedmann equations.

1. INTRODUCTION

In a recent paper (Gemelli, 2006) a 5-dimensional generalization of the equa-
tions of special relativistic hydrodynamics was introduced. It was showed that
a particle production phenomenon arises in a natural way in such framework.
The 5-d cosmological special-relativity or brane world theory interpretation, in
conformity with Carmeli’s theories (Carmeli, 1995, 1996, 2002), with the reced-
ing velocity of galaxies playing the role of fifth dimension, is rather natural. In
cosmological relativity, however, the fifth dimension is timelike, while as for the
particle production mechanism described in Gemelli (2006), also a spacelike fifth
dimension can be considered as well.

Particle production is a feature of recent relativistic inflationary cosmology
(see e.g. Cissoko, 1998). Cosmological particle production is thought to account
for negative pressure, which arises in the modelling of the accelerating universe
(de Campos, 2002). The cosmological scenario with particle production is usually
called open system cosmology (Prigogine et al., 1989).

Then there is a possible link between cosmological relativity (or rather,
the 5-d version of it) and open system cosmology, a link that in principle
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permits to interpret particle production phenomena as cosmological effects. This is
interesting, since in cosmology particle production is usually introduced by hand;
the 5-d hydrodynamics approach instead has it as a natural consequence of 5-d
cosmology, and has it in the limit of negligible gravitation.

A concrete calculation of the source of particle production was not carried
out in Gemelli (2006), but, as a possible valid strategy, it was proposed to proceed
to some kind of generalization of the classic thermodynamical principle:

T dS = dE − p

r2
dr (1)

where T denotes temperature, S entropy, p pressure and r matter density (baryon
number). The problem was however left open in Gemelli (2006).

Here we instead see that there is no need to introduce new thermodynamical
principles: it is possible in fact to obtain the expression of the source of particle
production in ordinary thermodynamical terms. Thus one finds out that such source
vanishes in the particular case the fluid is isentropic (Section 3).

The aim of this paper is also to see to what extent the dynamics of the mass-
energy content of the Universe can be described in special relativistic terms: i.e.
by considering “test” mass-energy distributions in a flat 5-d spacetime. In fact
we are going to see that the 5-d cosmological special relativistic hydrodynamical
equations lead to dynamical equations in terms of a scale factor, equations which
resemble or are analogues in a sense to those of Friedmann’s (Section 4).

Friedmann equations are (Carmeli, 2002, p. 168–169 and Wesson, 1999,
p. 15): (

Ṙ

R

)2

= 1

3
(χρF + �) − k

R2
(2)

R̈

R
= −χ

6
(ρF + 3pF ) + �

3
(3)

where R is the scale factor, χ is the gravitational constant, � is the cosmological
constant, k = +1, 0,−1 and ρF and pF are density and pressure of the cosmo-
logical matter-distribution of curved spacetime. We had to introduce the suffix
|F to distinguish them from the analogous fields of our test distribution in flat
spacetime. In (2)–(3) dots mean derivatives with respect to the coordinate time.

The fact that equations (2)–(3) can be formally obtained in a 5-d special rela-
tivistic framework is not completely surprising, since the full 5-d hydrodynamical
system gives us free parameters to handle with, but it is also non trivial, since
Friedmann equations are Einstein’s gravitational equations, while we are working
in a flat-spacetime, with no gravitation.

The sgnificative idea then is that 5-d special relativistic hydrodynamics can
simulate, at least to some extent, general relativistic cosmology.
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2. 5-D SPECIAL RELATIVISTIC HYDRODYNAMICS

Let us briefly recall the notations and hypothesis introduced in Gemelli
(2006), with some important completion.

Let us consider a 5-dimensional flat manifold M5. We leave for the moment
the possibility for the signature to be − + + + − or − + + + + as well; to this
aim we will introduce in the equations a scalar ε which can assume the values +1
or −1. Let capital latin indices run from 0 to 4 and greek letters run from 0 to 3.
We choose orthonormal coordinates, such that the 5-dimensional line element is:

gABdxAdxB = −dt2 + dx2 + dy2 + dz2 + εdξ 2 (4)

where we have denoted t = x0, x = x1, y = x2, z = x3 and ξ = x4.
In the case of cosmological special relativity we have ε = −1 and ξ = v,

where v is the receding velocity of galaxies. In fact if ε = −1 we may equiva-
lently being considering the 5-d extension of cosmological special relativity or the
flat-spacetime specialization of Carmeli’s general relativistic brane world theory
(Carmeli, 2002). In practice we set both the speed of light in vacuo c = 1 and the
Hubble-Carmeli constant (analogue to c for the fifth dimension) H−1

0 = 1.
Let us now define 5-d perfect hydrodynamics in an axiomatic way, by analogy

with 4-d hydrodynamics, and then study the 4-d consequences of such choice. Let
T AB be a 5-d conserved perfect fluid stress-energy tensor, i.e. such that:

∂AT AB = 0 (5)

and that:

T AB = (M + Q)V AV B + QgAB (6)

Here the “thermodynamical” fields M and Q are supposed to be defined and
regular in a 5-d “world tube” generated by a geometrical congruence of lines
tangent to V . Let s be a privileged parameter along one of such lines, which
we denote by �, with parametric equations xA = XA(s); we thus have, along �:
M = M(s), Q = Q(s), and:

V A = dxA

ds
. (7)

Note that in Gemelli (2006) the symbol R was used in place of M; here we instead
deserve R for a more appropriate use (see Section 4). Now let us introduce the
following splitting:

V A = WA + µ�A (8)

where �A = δA
ξ is the direction of the fifth dimension and µ a free parameter,

equivalent to the square of V , as we are going to see. We have: V α = Wα =
dxα/ds and V ξ = µ = dξ/ds.
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Let us moreover denote by a star the derivative with respect to s and by prime
the derivative with respect to ξ , so that we have:

( )� = V A∂A = Wα∂α + µ( )′. (9)

We also have: V A = (XA)�, ξ� = µ. Let us denote E = T ξξ . Now system (5)
equivalently reads:

∂αT αξ + E′ = 0

∂αT αβ + (T ξβ)′ = 0 (10)

Recall that for an ordinary perfect fluid the 4-d system of hydrodynamics is
(Lichnerowicz, 1967; Anile, 1989; Lichnerowicz, 1994):

∂α(rUα) = 0
(11)

∂α[(ρ + p)UαUβ + pgαβ] = 0

where r is the baryon number, ρ is the density, p is the pressure and U the
unit 4-velocity vector, and gαβ the Minkowski metric. We have by definition:
ρ = r(1 + E) where E is the internal energy. We suppose that an equation of state
of the kind p = p(r, S) is given and that the thermodynamical principle (1) holds.

To have a significative match between (10) and (12) we have to suppose:

µ(M + Q)Wα = rUα

(M + Q)WαWβ + Qgαβ = (ρ + p)UαUβ + pgαβ (12)

One thus necessarily finds:

Q = p, M = r2

µ2(ρ + p)
− p (13)

and consequently:

Wα = µ
ρ + p

r
Uα. (14)

In relativistiv hydrodynamics the variable f = (ρ + p)/r is called fluid index,
and it is f = i + 1, where i is the specific enthalpy (see Lichnerowicz, 1994
p. 99). We then have:

Wα = µf Uα. (15)

We also have:

V 2 = V AVA = µ2[ε − f 2] (16)

By introducing the symbol V 2 we implicitedly assume VAV A > 0. Even if we
could do without such hypothesys, for the moment we prefer to work with VAV A >

0 for the sake of simplicity. We see from (16) that the parameter µ is equivalent
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to the square of V , as said before. We leave µ as a free parameter for the moment.
For the sake of brevity we denote by a dot derivative with respect to proper time,
i.e.: ( )··· = Uα∂α; this should not be confused with derivative with respect to
coordinate time, as it is instead in (2)–(3). From (9) we then have:

( )� = µ[f ( )··· + ( )′] (17)

Now let us apply (17) to ξ and compare with ξ� = µ; we are led to the following
identity:

f ξ̇ = 0 (18)

We discard for the moment the singular situation f = 0 (otherwise ρ + p = 0)
and conclude from (18) that ξ̇ = 0. Our hydrodynamical system now reads as
follows:

∂α(rUα) + E′ = 0
(19)

∂αT αβ + (rUβ)′ = 0

In particular, the function −E′ is interpretable as the source of particle production.

3. COSMOLOGICAL PARTICLE PRODUCTION

Let us now introduce in (20) the expression of the 4-d component of the
stress-energy tensor:

T αβ = (ρ + p)UαUβ + pgαβ (20)

and split the system with respect to U and the orthogonal local rest space (Jantzen
et al., 1992); we have:

ṙ + r∂αUα + E′ = 0

ρ̇ + (ρ + p)∂αUα + r ′ = 0 (21)

(ρ + p)U̇β + r(Uβ)′ + ∂βp + Uβṗ = 0

Note that if we remove from (22) all the terms with a prime, i.e. we consider in a
sense the ordinary 4-d situation, in wich all fields are independent on ξ , we obtain
nothing but the ordinary 4-d hydrodynamical system:

ṙ + r∂αUα = 0

ρ̇ + (ρ + p)∂αUα (22)

(ρ + p)U̇β + ∂βp + Uβṗ = 0

From (22)1 and (22)2 we have:

ρ̇ − f (ṙ + E′) + r ′ = 0 (23)
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Now since we have by definition (Gemelli, 2006):

ρ = r(1 + E) (24)

where E is the internal energy, from the thermodynamical principle (1) we have:

dρ = f dr + rT dS (25)

so that from (23) we have the following relation for E′:

E′ = f −1(rT Ṡ + r ′) (26)

However, by definition we have (Gemelli, 2006):

E = r2

ρ + p
+ εp = rf −1 + εp (27)

and thus, from comparison of (23) and (27) we have:

rf −1T (Ṡ + f −1S ′) = (ε − f −2)p′ (28)

or equivalently, from (9):

r2f −2µ−1T S� = (ε − f −2)p′ (29)

From (29) we have that if all fields are independent on ξ , like in ordinary 4-d
hydrodynamics, we have Ṡ = 0, which in fact is a well known consequence of
system (23).

From (29) it is also possible to conclude that particle production is absent
if the fluid is isentropic, i.e. if dS = 0 [and the equation of state consequently
reduces to p = p(r)] then E′ = 0. In fact if dS = 0 we have:

(ε − f −2)p′ = 0 (30)

and therefore there are two possible situations: p′ = 0 or ε = f −2.
If p′ = 0 then from the equation of state we also have r ′ = ρ ′ = 0 and

consequently E′ = 0.
If instead ε = f −2, then we must have ε = +1 and r2 = (ρ + p)2. We con-

sequently have:

rdr = (ρ + p)(dρ + dp) (31)

Now from (1) if dS = 0 we have dρ = r−1(ρ + p)dr so that from (31) we have:

(ρ + p)dp = 0 (32)

Excluding the singular case ρ + p = 0 we conclude dp = 0 and consequently
dr = dρ = 0, which implies dE = 0 and thus again E′ = 0.

Thus in any case the source of particle production vanishes if dS = 0.
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4. FRIEDMANN COSMOLOGY

Let us consider the general case dS �≡ 0, i.e. with a possibly nonvanishing
source of particle production, and let us turn to the original 5-d system. In rel-
ativistic hydrodynamics the variable T = f/r is called dynamical volume (see
Lichnerowicz, 1994, p. 99). Let  = (µ2T )−1. From (13) we then have

M + Q =  (33)

It is a useful idea, on physical terms, to imagine that the dynamical volume should
be proportional to the cube of a parameter R, representing a “typical length,” and
that therefore our variable  should be proportional to R−3; we will introduce this
hypothesis later on.

From (5) and (6) we then obtain the following general form of the 5-d system:

�V B + (V B)� + ∂AV AV B + ∂Bp = 0 (34)

We now are going to consider some useful consequences of system (34).
By multiplying (34) by XB we have:

XB(V B)� + (φ� + ∂AV A)XBV B + XB∂Bp = 0 (35)

By multiplying (34) by VB we have:

VB(V B)� + (� + ∂AV A)VBV B + p� = 0 (36)

Finally, by taking the 5-d divergence of (34), i.e. in practice by multiplying it by
∂B , we have:

�� + 2φ�∂AV A + (V B)�∂B + [∂B(V B)� + (∂BV B)�]

+ (∂AV A)2 + ∂A∂Ap = 0 (37)

Now, since we have V B = (XB)� we have:

∂XBV B = (XBXB)�/2

∂XB(V B)� = (XBXB)��/2 − VBV B (38)

∂VB(V B)� = (VBV B)�/2

Moreover, since  = (s), we write: (V B)�∂B = �∂AV A. In fact:

�(V B)�
ds

dXB
= � (V B)�

(XB)�

and we also have:

(V B)�

(XB)�
= dV B

ds

ds

dXB
= dV B

dXB
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Therefore, denoting, for the sake of brevity: X2 = XBXB , ∂X = XB∂B , � =
∂A∂A and ∇V = ∂AV A we have that (35)–(37) take the following form:

(1/2)[(X2)�� − V 2] + (1/2)(� + ∇V )(X2)� + ∂Xp = 0 (39)

�V 2 + (1/2)(V 2)� + ∇V V 2 + p� = 0 (40)

�� + 3φ�∇V + [∂A(V A)� + ∇V �] + ∇V 2 + �p = 0 (41)

Note that, with our use of the symbol X2 we again implicitedly assume, for the
sake of simplicity, XAXA > 0, which is restrictive, since XAXA = xix

i − t2 − ξ 2

in general could be non positive. However we may be considering t = 0 (present
time) and “large distances” in a sense.

Now let us introduce the typical length parameter R, in a crude and simple
way, i.e. by taking X2 = R2 and  = R−3. This R should not be confused with
the Ricci scalar of general relativity. It also should not be taken as implying the
existence of a physical boundary. From (39)–(41) we have respectively:

[(R�)2 + RR�� − V 2/2] + (−3R�/R + ∇V )RR� + ∂Xp = 0 (42)

− 3V 2R�/R + (1/2)(V 2)� + ∇V V 2 + p� = 0 (43)

− [3R�/R − 12(R�/R)2 + 9∇V R�/R] + [(∇V )� + ∇(V �)]

+ ∇V 2 + �p = 0 (44)

Let us now suppose the cosmological fluid has a quasi-isotropic and slow-varying
pressure. This rough hypothesis could certainly be replaced by some more general
extimate on the dependence of dp on R. For example the rest of our treatment
would be substantially unchanged if we would assume dp ∝ R−2 and �p ∝ R−3,
but in absence of a concrete physical basis for such extimates, we prefer to simply
neglect all terms depending on the derivatives of the pressure. Assuming constant
or quasi-constant pressure still does not mean assuming a trivial thermodynamics
unless one additionally assumes dS = 0. Note moreover that in our formal recov-
ering of the Friedmann equations (2)-(3), the thermodynamical variables ρF and
pF will be different than our special relativistic analogoues: they will depend on
V 2, ∇(V )� and (∇V )� as well as on ρ and p. In practice constant p doesn not
mean constant pF . This leaves us a certain freedom of choice of hypothesys on
the evolution of the special relativistic test-fluid. Now from (43) we have:

∇V = 3
R�

R
− α (45)

where we have denoted:

α = 1

2

(V 2)�

V 2
(46)
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Replacing ∇V by (45) in (42) and (43) we have:

R��

R
+

(
R�

R

)2

− α
R�

R
− 1

2

V 2

R2
= 0 (47)

R��

R
+ 2

(
R�

R

)2

− α
R�

R
− 1

3
(β + α2) = 0 (48)

where we have denoted:

β = (∇V )� + ∇(V �) (49)

Taking (48) minus (47) we then have:(
R�

R

)2

= 1

3
(β + α2) − 1

2

V 2

R2
(50)

We recognize the same structure of the Friedmann equation (2). The corrispon-
dence is only formal, since we have to somehow identify time derivative with
derivative with respect to s, and the scale factor of Friedmann cosmology (which
comes from the metric of the curved 4-d spacetime) with our “typical length.” Yet
such correspondance is significant. We have that (50) reduces to (2) if:

χρF + � = β + α2

k = V 2/2 (51)

In particular our working hypothesis VAV A > 0 leads to k = 1. Exact match with
the value +1 is not a problem since we still can handle with the free parameter
µ: see (16). But it is clear that in general the sign of k is determined by that of
VAV A: we have k = 0 if V 2 = 0 and k = −1 if VAV A = −V 2 < 0. In particular,
if ε = −1 (Carmelian relativity) from (30) we necessarily have k = −1.

Now replacing R�/R from (50) in (47), we have:

R��

R
= −1

3
(β + α2) + V 2

R2
+ α

√
1

3
(β + α2) − V 2

2R2
(52)

By power series expansion in terms of R−1 we have:√
1

3
(β + α2) − V 2

2R2
= 1

3

√
3(β + α2) −

√
3(β + α2)

4(β + α2)

V 2

R2
+ O

(
1

R4

)
(53)

Thus, dropping terms of higher orders, we have from (52):

R��

R
= 1

3
[
√

3β + 3α2 − (β + α2)] +
(

1 −
√

3(β + α2)

4(β + α2)

)
V 2

R2
(54)
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This appears to introduce a correction term of order R−2 to our analogue to
Friedmann equation (3). However we can still match the terms of order zero if:

χ

6
(ρF + 3PF ) + λ

3
= 1

3

[√
3β + 3α2 − (β + α2)

]
(55)

A solution to system (51)–(55) is the following:

χρ = β + α2χp = (1/3)[β + α2 − 2
√

β + α2] (56)

The possible additional condition: β = 3/16 − α2 lets the R−2 correction vanish,
so that both Friedmann equations (2)–(3) are formally recovered, but leads to
constant values for ρF and pF :

χρF = 3/16 χpF = −7/16 (57)

Thus in this case we have pF < 0.
Negative pressure cannot be discarded in cosmology and astrophysics (see

e.g. Bonnor (1960); Künzle (1967); Wesson (1986); Ebert (1989); Katz and
Lyndel-Bell (1991)) and even in some hydrodynamical problems (involving tur-
bolence and moving boundaries: see e.g. Manarini (1948); Greenhow and Moyo
(1997); Lifschitz (1998)). Here it is even less surprising, since we are dealing with
cosmological particle production. However, our source −E′ of particle produc-
tion is actually independent on the value or sign of pF , i.e. the particle production
mechanism considered in Sections 2 and 3 does not need pF < 0 nor p < 0.
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